Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
medrxiv; 2023.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2023.02.26.23286474

RESUMO

Population-representative estimates of SARS-CoV-2 infection prevalence and antibody levels in specific geographic areas at different time points are needed to optimise policy responses. However, even population-wide surveys are potentially impacted by biases arising from differences in participation rates across key groups. Here, we use spatio-temporal regression and post-stratification models to UKs national COVID-19 Infection Survey (CIS) to obtain representative estimates of PCR positivity (6,496,052 tests) and antibody prevalence (1,941,333 tests) for different regions, ages and ethnicities (7-December-2020 to 4-May-2022). Not accounting for vaccination status through post-stratification led to small underestimation of PCR positivity, but more substantial overestimations of antibody levels in the population (up to 21%), particularly in groups with low vaccine uptake in the general population. There was marked variation in the relative contribution of different areas and age-groups to each wave. Future analyses of infectious disease surveys should take into account major drivers of outcomes of interest that may also influence participation, with vaccination being an important factor to consider.


Assuntos
COVID-19 , Doenças Transmissíveis
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.11.29.22282916

RESUMO

Following primary SARS-CoV-2 vaccination, understanding the relative extent of protection against SARS-CoV-2 infection from boosters or from breakthrough infections (i.e. infection in the context of previous vaccination) has important implications for vaccine policy. In this study, we investigated correlates of protection against Omicron BA.4/5 infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults [≥]18y from the United Kingdom general population. We found that higher anti-spike IgG antibody levels were associated with increased protection against Omicron BA.4/5 infection and that breakthrough infections were associated with higher levels of protection at any given antibody level than booster vaccinations. Breakthrough infections generated similar antibody levels to third/booster vaccinations, and the subsequent declines in antibody levels were similar to or slightly slower than those after third/booster vaccinations. Taken together our findings show that breakthrough infection provides longer lasting protection against further infections than booster vaccinations. For example, considering antibody levels associated with 67% protection against infection, a third/booster vaccination did not provide long-lasting protection, while a Delta/Omicron BA.1 breakthrough infection could provide 5-10 months of protection against Omicron BA.4/5 reinfection. 50-60% of the vaccinated UK population with a breakthrough infection would still be protected by the end of 2022, compared to <15% of the triple-vaccinated UK population without previous infection. Although there are societal impacts and risks to some individuals associated with ongoing transmission, breakthrough infection could be an efficient immune-boosting mechanism for subgroups of the population, including younger healthy adults, who have low risks of adverse consequences from infection.


Assuntos
Dor Irruptiva , COVID-19
3.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.09.14.22279931

RESUMO

BackgroundMonitoring infection trends is vital to informing public health strategy. Detecting and quantifying changes in growth rates can inform policymakers rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. MethodsWe included PCR results from all participants in the UKs COVID-19 Infection Survey between 1 August 2020-30 June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. FindingsOf 8,799,079 visits, 147,278 (1{middle dot}7%) were PCR-positive. Over the time period, change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR, with only 2/48 change-points identified by only one method. Estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR; 77% (74/96) of change-points identified by successive GAMs were identified by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. InterpretationChange-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel. Running either method in near real-time on different infection surveillance data streams could provide timely warnings of changing underlying epidemiology. FundingUK Health Security Agency, Department of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research.


Assuntos
COVID-19
4.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275865

RESUMO

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses - and hence protection from disease - requires careful characterisation. In a large prospective study of UK healthcare workers (PITCH, within the larger SIREN study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZ1222 (Oxford/AstraZeneca) vaccination and following a subsequent BNT162b2 booster vaccination. We make three important observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and B cell responses were better maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels to post second dose levels and broadened neutralising activity against variants of concern including omicron BA.1, alongside further boosting of T cell responses. Thirdly, prior infection maintained its impact driving larger T cell responses compared to never infected people, including after the third dose. In conclusion, the maintenance of T cell responses in time and against variants of concern may account for continued protection against severe disease.


Assuntos
COVID-19 , Alucinações
5.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.11.15.21266255

RESUMO

The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects are largely unknown. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially problematic because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation behaviours. Here, we show that social behaviours were overall unrelated to personal vaccination, but - adjusting for variation in mitigation policies - were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously.


Assuntos
COVID-19
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.11.10.21265651

RESUMO

Background and aimsTo determine the impact of the COVID-19 pandemic on the population with chronic Hepatitis B virus (HBV) infection under hospital follow-up in the UK, we quantified the coverage and frequency of measurements of biomarkers used for routine surveillance (ALT and HBV viral load). MethodsWe used anonymised electronic health record data from the National Institute for Health Research (NIHR) Health Informatics Collaborative (HIC) pipeline representing five UK NHS Trusts. ResultsWe report significant reductions in surveillance of both biomarkers during the pandemic compared to pre-COVID years, both in terms of the proportion of patients who had [≥]1 measurement annually, and the mean number of measurements per patient. ConclusionsFurther investigation is required to determine whether these disruptions will be associated with increased rates of adverse chronic HBV outcomes.


Assuntos
COVID-19 , Hepatite B
7.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.10.28.21265499

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time-of-day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, age, sex, and days post-vaccination on anti-Spike antibody responses in healthcare workers. The magnitude of the anti-Spike antibody response associated with the time-of-day of vaccination, vaccine type, participant age, sex, and days post vaccination. These results may be relevant for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Infecções por Coronavirus
8.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.09.13.21263487

RESUMO

We investigated anti-spike IgG antibody responses following second doses of ChAdOx1 or BNT162b2 SARS-CoV-2 vaccines in the UK general population. In 186,527 individuals, we found significant boosting of anti-spike IgG by second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Antibody levels declined faster at older ages than younger ages with BNT162b2, but were similar across ages with ChAdOX1. With both vaccines, prior infection significantly increased antibody peak level and half-life. Protection was estimated to last for 0.5-1 year after ChAdOx1 and >1 year after BNT162b2, but could be reduced against emerging variants. Reducing the dosing interval to 8 weeks for both vaccines or further to 3 weeks for BNT162b2 may help increase short-term protection against the Delta variant. A third booster dose may be needed, prioritised to more vulnerable people.

9.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.09.02.21263017

RESUMO

BackgroundThe COVID-19 pandemic is rapidly evolving, with emerging variants and fluctuating control policies. Real-time population screening and identification of groups in whom positivity is highest could help monitor spread and inform public health messaging and strategy. MethodsTo develop a real-time screening process, we included results from nose and throat swabs and questionnaires taken 19 July 2020-17 July 2021 in the UKs national COVID-19 Infection Survey. Fortnightly, associations between SARS-CoV-2 positivity and 60 demographic and behavioural characteristics were estimated using logistic regression models adjusted for potential confounders, considering multiple testing, collinearity, and reverse causality. FindingsOf 4,091,537 RT-PCR results from 482,677 individuals, 29,903 (0{middle dot}73%) were positive. As positivity rose September-November 2020, rates were independently higher in younger ages, and those living in Northern England, major urban conurbations, more deprived areas, and larger households. Rates were also higher in those returning from abroad, and working in healthcare or outside of home. When positivity peaked December 2020-January 2021 (Alpha), high positivity shifted to southern geographical regions. With national vaccine roll-out from December 2020, positivity reduced in vaccinated individuals. Associations attenuated as rates decreased between February-May 2021. Rising positivity rates in June-July 2021 (Delta) were independently higher in younger, male, and unvaccinated groups. Few factors were consistently associated with positivity. 25/45 (56%) confirmed associations would have been detected later using 28-day rather than 14-day periods. InterpretationPopulation-level demographic and behavioural surveillance can be a valuable tool in identifying the varying characteristics driving current SARS-CoV-2 positivity, allowing monitoring to inform public health policy. FundingDepartment of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research.


Assuntos
COVID-19
10.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.08.19.21262231

RESUMO

BackgroundSeveral community-based studies have assessed the ability of different symptoms to identify COVID-19 infections, but few have compared symptoms over time (reflecting SARS-CoV-2 variants) and by vaccination status. MethodsUsing data and samples collected by the COVID-19 Infection Survey at regular visits to representative households across the UK, we compared symptoms in new PCR-positives and comparator test-negative controls. ResultsFrom 26/4/2020-7/8/2021, 27,869 SARS-CoV-2 PCR-positive episodes occurred in 27,692 participants (median 42 years (IQR 22-58)); 13,427 (48%) self-reported symptoms ("symptomatic positive episodes"). The comparator group comprised 3,806,692 test-negative visits (457,215 participants); 130,612 (3%) self-reported symptoms ("symptomatic negative visit"). Reporting of any symptoms in positive episodes varied over calendar time, reflecting changes in prevalence of variants, incidental changes (e.g. seasonal pathogens, schools re-opening) and vaccination roll-out. There was a small increase in sore throat reporting in symptomatic positive episodes and negative visits from April-2021. After May-2021 when Delta emerged there were substantial increases in headache and fever in positives, but not in negatives. Although specific symptom reporting in symptomatic positive episodes vs. negative visits varied by age, sex, and ethnicity, only small improvements in symptom-based infection detection were obtained; e.g. adding fatigue/weakness or all eight symptoms to the classic four symptoms (cough, fever, loss of taste/smell) increased sensitivity from 74% to 81% to 90% but tests per positive from 4.6 to 5.3 to 8.7. ConclusionsWhilst SARS-CoV-2-associated symptoms vary by variant, vaccination status and demographics, differences are modest and do not warrant large-scale changes to targeted testing approaches given resource implications. SummaryWithin the COVID-19 Infection Survey, recruiting representative households across the UK general population, SARS-CoV-2-associated symptoms varied by viral variant, vaccination status and demographics. However, differences are modest and do not currently warrant large-scale changes to targeted testing approaches.


Assuntos
Cefaleia , Febre , Tosse , COVID-19 , Fadiga
11.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.07.02.21259897

RESUMO

We estimated the duration and determinants of antibody response after SARS-CoV-2 infection in the general population using representative data from 7,256 United Kingdom COVID-19 infection survey participants who had positive swab SARS-CoV-2 PCR tests from 26-April-2020 to 14-June-2021. A latent class model classified 24% of participants as non-responders not developing anti-spike antibodies. These seronegative non-responders were older, had higher SARS-CoV-2 cycle threshold values during infection (i.e. lower viral burden), and less frequently reported any symptoms. Among those who seroconverted, using Bayesian linear mixed models, the estimated anti-spike IgG peak level was 7.3-fold higher than the level previously associated with 50% protection against reinfection, with higher peak levels in older participants and those of non-white ethnicity. The estimated anti-spike IgG half-life was 184 days, being longer in females and those of white ethnicity. We estimated antibody levels associated with protection against reinfection likely last 1.5-2 years on average, with levels associated with protection from severe infection present for several years. These estimates could inform planning for vaccination booster strategies.


Assuntos
COVID-19
12.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.06.28.21259028

RESUMO

Background Despite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. In this retrospective cohort study, we investigated whether whole-genome sequencing (WGS) could enhance the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition. Methods and findings From 17-November-2020 to 5-January-2021, 803 inpatients and 329 staff were diagnosed with SARS-CoV-2 infection across four teaching hospitals in Oxfordshire, UK. We classified cases according to epidemiological definitions, sought epidemiological evidence of a potential source for each nosocomial infection, and evaluated if epidemiologically-linked cases had genomic evidence supporting transmission. We compared epidemiological and genomic outbreak identification. Using national epidemiological definitions, 109/803(14%) inpatient infections were classified as definite/probable nosocomial, 615(77%) as community-acquired and 79(10%) as indeterminate. There was strong epidemiological evidence to support definite/probable cases as nosocomial: 107/109(98%) had a prior-negative PCR in the same hospital stay before testing positive, and 101(93%) shared time and space with known infected patients/staff. Many indeterminate cases were likely infected in hospital: 53/79(67%) had a prior-negative PCR and 75(95%) contact with a potential source. 89/615(11% of all 803 patients) with apparent community-onset had a recent hospital exposure. WGS highlighted SARS-CoV-2 is mainly imported into hospitals: within 764 samples sequenced 607 genomic clusters were identified (>1 SNP distinct). Only 43/607(7%) clusters contained evidence of onward transmission (subsequent cases within 1 SNP). 20/21 epidemiologically-identified outbreaks contained multiple genomic introductions. Most (80%) nosocomial acquisition occurred in rapid super-spreading events in settings with a mix of COVID-19 and non-COVID-19 patients. Hospitals not routinely admitting COVID-19 patients had low rates of transmission. Undiagnosed/unsequenced individuals prevent genomic data from excluding nosocomial acquisition. Conclusions Our findings suggest current surveillance definitions underestimate nosocomial acquisition and reveal most nosocomial transmission occurs from a relatively limited number of highly infectious individuals.


Assuntos
Infecção Hospitalar , Instabilidade Genômica , COVID-19
13.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-612205.v1

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is normally controlled by effective host immunity including innate, humoral and cellular responses. However, the trajectories and correlates of acquired immunity, and the capacity of memory responses months after infection to neutralise variants of concern - which has important public health implications - is not fully understood. To address this, we studied a cohort of 78 UK healthcare workers who presented in April to June 2020 with symptomatic PCR-confirmed infection or who tested positive during an asymptomatic screening programme and tracked virus-specific B and T cell responses longitudinally at 5-6 time points each over 6 months, prior to vaccination. We observed a highly variable range of responses, some of which - T cell interferon-gamma (IFN-γ) ELISpot, N-specific antibody waned over time across the cohort, while others (spike-specific antibody, B cell memory ELISpot) were stable. In such cohorts, antiviral antibody has been linked to protection against re-infection. We used integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling Over Night) to explore this heterogeneity and to identify predictors of sustained immune responses. Hierarchical clustering defined a group of high and low antibody responders, which showed stability over time regardless of clinical presentation. These antibody responses correlated with IFN-γ ELISpot measures of T cell immunity and represent a subgroup of patients with a robust trajectory for longer term immunity. Importantly, this immune-phenotype associates with higher levels of neutralising antibodies not only against the infecting (Victoria) strain but also against variants B.1.1.7 (alpha) and B.1.351 (beta). Overall memory responses to SARS-CoV-2 show distinct trajectories following early priming, that may define subsequent protection against infection and severe disease from novel variants.


Assuntos
COVID-19
14.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.05.04.21256571

RESUMO

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.


Assuntos
COVID-19
15.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.04.22.21255911

RESUMO

Real-world data on antibody response post-vaccination in the general population are limited. 45,965 adults in the UKs national COVID-19 Infection Survey receiving Pfizer-BioNTech or Oxford-AstraZeneca vaccines had 111,360 anti-spike IgG measurements. Without prior infection, seroconversion rates and quantitative antibody levels post single dose were lower in older individuals, especially >60y. Two doses achieved high responses across all ages, particularly increasing seroconversion in older people, to similar levels to those achieved after prior infection followed by a single dose. Antibody levels rose more slowly and to lower levels with Oxford-AstraZeneca vs Pfizer-BioNTech, but waned following a single Pfizer-BioNTech dose. Latent class models identified four responder phenotypes: older people, males, and those having long-term health conditions were more commonly low responders. Where supplies are limited, vaccines should be prioritised for those not previously infected, and second doses to individuals >60y. Further data on the relationship between vaccine-mediated protection and antibody responses are needed.


Assuntos
COVID-19
16.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.21.21254061

RESUMO

ObjectivesWe investigate determinants of SARS-CoV-2 anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines. MethodsHCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks post-vaccination if receiving a 12-week dosing interval. Quantitative post-vaccination anti-spike antibody responses were measured using the Abbott SARS-CoV-2 IgG II Quant assay (detection threshold: [≥]50 AU/ml). We used multivariable logistic regression to identify predictors of seropositivity and generalised additive models to track antibody responses over time. ResultsVaccine uptake was 80%, but less in lower-paid roles and Black, south Asian and minority ethnic groups. 3570/3610(98.9%) HCWs were seropositive >14 days post-first vaccination and prior to second vaccination, 2706/2720(99.5%) after Pfizer-BioNTech and 864/890(97.1%) following Oxford-AstraZeneca vaccines. Previously infected and younger HCWs were more likely to test seropositive post-first vaccination, with no evidence of differences by sex or ethnicity. All 470 HCWs tested >14 days after second vaccine were seropositive. Quantitative antibody responses were higher after previous infection: median(IQR) >21 days post-first Pfizer-BioNTech 14,604(7644-22,291) AU/ml vs. 1028(564-1985) AU/ml without prior infection (p<0.001). Oxford-AstraZeneca vaccine recipients had lower readings post-first dose compared to Pfizer-BioNTech, with and without previous infection, 10,095(5354-17,096) and 435(203-962) AU/ml respectively (both p<0.001 vs. Pfizer-BioNTech). Antibody responses post-second vaccination were similar to those after prior infection and one vaccine dose. ConclusionsVaccination leads to detectable anti-spike antibodies in nearly all adult HCWs. Whether differences in response impact vaccine efficacy needs further study.

17.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21254128

RESUMO

Tocilizumab (TCZ), an IL-6 receptor antagonist, is used in the treatment of COVID. However, this agent carries a black box warning for infection complications, which may include reactivation of tuberculosis (TB) or hepatitis B virus (HBV), or worsening of hepatitis C virus (HCV). Due to the pace of clinical research during the COVID pandemic, prospective evaluation of these risks has not been possible. We undertook a systematic review, generating mean cumulative incidence estimates for reactivation of HBV and TB at 3.3% and 4.3%. We could not generate estimates for HCV. These data derive from heterogeneous studies pre-dating the COVID outbreak, with differing epidemiology and varied approaches to screening and prophylaxis. We underline the need for careful individual risk assessment prior to TCZ prescription, and present an algorithm for clinical stratification. There is an urgent need for ongoing collation of safety data as TCZ therapy is used in COVID. KEY POINTSUse of tocilizumab treatment in COVID-19 may risk infective complications. We have undertaken a systematic literature review to assess the risks of reactivation of HBV and TB, generating mean estimates of 3.3% and 4.3% incidence, respectively.


Assuntos
COVID-19
18.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253218

RESUMO

Background Natural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. Methods In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results 13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. Conclusion Natural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Assuntos
COVID-19 , Deficiência de Proteína S
19.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.02.04.21251134

RESUMO

BackgroundMultiple early hospital cohorts of coronavirus disease 2019 (COVID-19) showed that patients with chronic respiratory disease were significantly under-represented. We hypothesised that the widespread use of inhaled glucocorticoids was responsible for this finding and tested if inhaled glucorticoids would be an effective treatment for early COVID-19 illness. MethodsWe conducted a randomised, open label trial of inhaled budesonide, compared to usual care, in adults within 7 days of the onset of mild Covid-19 symptoms. The primary end point was COVID-19-related urgent care visit, emergency department assessment or hospitalisation. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. Results146 patients underwent randomisation. For the per protocol population (n=139), the primary outcome occurred in 10 participants and 1 participant in the usual care and budesonide arms respectively (difference in proportion 0.131, p=0.004). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was 8. Clinical recovery was 1 day shorter in the budesonide arm compared to the usual care arm (median of 7 days versus 8 days respectively, logrank test p=0.007). Proportion of days with a fever and proportion of participants with at least 1 day of fever was lower in the budesonide arm. Fewer participants randomised to budesonide had persistent symptoms at day 14 and day 28 compared to participants receiving usual care. ConclusionEarly administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery following early COVID-19 infection. (Funded by Oxford NIHR Biomedical Research Centre and AstraZeneca; ClinicalTrials.gov number, NCT04416399) Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe majority of interventions studied for the COVID-19 pandemic are focused on hospitalised patients. Widely available and broadly relevant interventions for mild COVID-19 are urgently needed. Added value of this studyIn this open label randomised controlled trial, inhaled budesonide, when given to adults with early COVID-19 illness, reduces the likelihood of requiring urgent care, emergency department consultation or hospitalisation. There was also a quicker resolution of fever, a known poor prognostic marker in COVID-19 and a faster self-reported and questionnaire reported symptom resolution. There were fewer participants with persistent COVID-19 symptoms at 14 and 28 days after budesonide therapy compared to usual care. Implications of all the available evidenceThe STOIC trial potentially provides the first easily accessible effective intervention in early COVID-19. By assessing health care resource utilisation, the study provides an exciting option to help with the worldwide pressure on health care systems due to the COVID-19 pandemic. Data from this study also suggests a potentially effective treatment to prevent the long term morbidity from persistent COVID-19 symptoms.


Assuntos
COVID-19
20.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20234369

RESUMO

BackgroundIt is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection. MethodsWe investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at Oxford University Hospitals, UK. Baseline antibody status was determined using anti-spike and/or anti-nucleocapsid IgG assays and staff followed for up to 30 weeks. We used Poisson regression to estimate the relative incidence of PCR-positive results and new symptomatic infection by antibody status, accounting for age, gender and changes in incidence over time. ResultsA total of 12219 HCWs participated and had anti-spike IgG measured, 11052 were followed up after negative and 1246 after positive antibody results including 79 who seroconverted during follow up. 89 PCR-confirmed symptomatic infections occurred in seronegative individuals (0.46 cases per 10,000 days at risk) and no symptomatic infections in those with anti-spike antibodies. Additionally, 76 (0.40/10,000 days at risk) anti-spike IgG seronegative individuals had PCR-positive tests in asymptomatic screening, compared to 3 (0.21/10,000 days at risk) seropositive individuals. Overall, positive baseline anti-spike antibodies were associated with lower rates of PCR-positivity (with or without symptoms) (adjusted rate ratio 0.24 [95%CI 0.08-0.76, p=0.015]). Rate ratios were similar using anti-nucleocapsid IgG alone or combined with anti-spike IgG to determine baseline status. ConclusionsPrior SARS-CoV-2 infection that generated antibody responses offered protection from reinfection for most people in the six months following infection. Further work is required to determine the long-term duration and correlates of post-infection immunity.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA